PREDICTION MODELING FOR ACADEMIC SUCCESS

Scott L. Bruce, EdD, ATC
Associate Professor/Co-clinical
 Coordinator/Director of Research
Masters of Athletic Training Program
Arkansas State University

Conflict of Interest

I have no affiliation or financial interest with or involvement in any organization or entity that will be discussed as part of this presentation.

Objectives

- To identify factors which may predict academic success
- To evaluate factors to decide which may contribute to predicting academic success
- To create a prediction model that fits the learners' specific situation
- To evaluate whether or not their prediction model has the ability to identify the most qualified candidates
"Begin with the end in mind"
(Covey, 2004)
- What is the ultimate indicator of student success in an academic program?
- In Athletic Training it is $1^{\text {st }}$-attempt Board of Certification (BOC) exam success
- Second question: How does one go about predicting who might be successful in a graduate academic program?
- Prediction modeling
- For today's presentation, I will use a Professional Master's of Athletic Training Program as my example

Outcome Measures

- Based on:
- Sensitivity
- Specificity
- Odds Ratio
- Relative Risk???
- Likelihood Ratios

Odds Ratio

- The odds that an outcome will occur given a particular exposure, compared to the odds of the outcome occurring in the absence of that exposure
- If the odds are the same for both groups, OR = 1.0

Odds Ratio

- Odds and horse racing
- 2:1 horse or 50:1 horse?
- 2:1 is better than the long shot of $50: 1$
- 2:1 injury/academic success or 50:1 injury/ academic success
- 50:1 says you are more likely to get
injured or have academic success than
- 50:1 says you are more likely to get
injured or have academic success than someone at 2:1

Relative Risk

- The likelihood that someone who has been exposed to a risk factor will develop the injury as compared to someone who does not have the risk factor
- If the probability is the same for both groups, RR = 1.0

Relative Frequency of Success

- Relative Frequency of Success (RFS) replaced Relative Risk since risk is not an appropriate term when measuring success
- Relative Frequency of Success is defined as:
- The likelihood that someone who has the predictor is forecast to be successful in a graduate academic program is successful compared with one who has not been so classified

Likelihood Ratios

- Positive LR (or +LR) is the probability that a student with the predictor (or possesses the predictor), would be successful in a graduate academic program compared to the probability that a student without the variable (or does not possess the predictor) would be successful in a graduate program
- Negative LR (or -LR) is the probability that a student w/o the predictor would be successful in a graduate academic program compared to the probability of the student with the predictor would be successful in a graduate program

Interpreting Different Statistics

Association	Small	Moderate	Large	Very Large
Odds Ratio	≥ 1.5	≥ 3.4	≥ 9.0	≥ 32.0
Relative Risk/Relative Frequency of Success	≥ 1.1	≥ 1.4	≥ 2.0	≥ 3.3
+ Likelihood Ratio	≤ 5.0	≤ 10.0	>10.0	
- Likelihood Ratio	≤ 0.5	≤ 0.2	<0.1	
Hazards Ratio	≥ 1.3	≥ 2.0	≥ 4.0	≥ 10.0

Steps in Prediction Modeling

- Three step process

1. Create the prediction model

- Clear operational definition of the dependent variable
- ID any and all potential predictor variables

2. Determine validity

- Apply rule to a different population

Today's focus will be on the development of CPGs

3. Conduct impact analysis

- Evidence rule change behavior, changes outcomes, or reduces costs

Clear Operational Definition of the Dependent Variable
 - Success in a grad program is difficult to define

- Most commonly accepted indicator of academic success is GPA

	First-attempt Pass on the BOC exam	
	Yes	No
First-year gGPA ≥ 3.45	71	9
First-year gGPA < 3.45	19	20
Fisher's Exact Test (one-sided) p < 0.001		
$\begin{aligned} & \mathrm{Sn}=0.79 \\ & (95 \% \mathrm{Cl}: 0.69,0.86) \end{aligned}$	$\begin{aligned} & \mathrm{Sp}=0.69 \\ & (95 \% \mathrm{Cl}: 0.51,0.83) \end{aligned}$	
$\begin{aligned} & \text { OR = } 8.30 \\ & (95 \% \text { Cl: } 3.26,21.16) \end{aligned}$	$\begin{aligned} & \text { RFS = } 1.82 \\ & \text { (95\% CI: 1.49, 2.23) } \end{aligned}$	
$\begin{aligned} & +\mathrm{LR}=2.54 \\ & (95 \% \text { Cl: } 1.46,4.42) \end{aligned}$	$\begin{array}{\|l\|} \hline-\mathrm{LR}=0.36 \\ (95 \% \mathrm{Cl}: 0.192,0.489) \end{array}$	

Potential Predictors for PMATP Success
 (Major Categories Only)

- Academic Profile of Undergraduate Institution (APUI)
- Basic Carnegie classification categories
- Undergraduate institution size and setting
- Advanced math \& science courses
- Number of adv. science courses
- Number of AT courses
- Adv. math, science, \& AT courses
- uGPA
- GRE Scores
- Public-Private Institution
- Residency
- In-state vs. Out-of-state

Multicollinearity

- When 2 or more predictors in a regression model are highly linearly related
- Outcome parameter for multicollinearity is Tolerance \& Variance Inflation Factor (VIF)
- Tolerance values close to zero = multicollinearity
- VIF = values of > 10 = multicollinearity
- Multicollinearity helped reduce the number of predictors from 39 to 9

Predictor Variables for PMATP Success

Origin Set of Predictors

- Number of math \& science courses
- Research Intensive = 1; Others = 0
- High APUI
- uGPA
- GREv
- GREq
- GREwr
- Physics: 1 = Yes; 0 = No
- Calculus: 1 = Yes; $0=$ No

Final Set of Predictors

- uGPA
- GREq
- Calculus
" "Original Set of Predictors" is after multicollinearity analysis which were then entered into the logistic regression.
- The "Final Set of Predictors" were what predictors were left after logistic regression

ROC Curves for GREq \& uGPA (for cutppls)

Tables for Individual Variables

	1st Year $\text { gGPA } \geq 3.45$	1st Year $\text { gGPA }<3.45$		1st Year $\text { gGPA } \geq 3.45$	1st Year $\text { gGPA }<3.45$		1st Year $\text { gGPA } \geq 3.45$	1st Year gGPA < 3.45
$\begin{aligned} & \text { GREq = } \\ & \geq 141.5 \end{aligned}$	85	18	$\begin{gathered} \text { uGPA }= \\ \geq 3.18 \end{gathered}$	68	15	Took Calculus	41	3
$\begin{gathered} \text { GREq }= \\ <141.5 \end{gathered}$	9	20	$\begin{gathered} \text { uGPA }= \\ <3.18 \end{gathered}$	26	27	Did not take Calculus	53	39

Fisher's Exact Test (one-sided) p < 0.001 for all 3 factors

Sn ($95 \% \mathrm{Cl}$)	0.90 (0.84, 0.95)	0.72 (0.63, 0.80)	0.44 (0.34, 0.54)
Sp ($95 \% \mathrm{Cl}$)	0.53 (0.37, 0.68)	0.64 (0.49, 0.77)	0.93 (0.81, 0.98)
OR (95\% CI)	10.49 (4.11, 26.78)	4.71 (2.17, 10.23)	10.06 (2.90, 34.86)
RFS (95\% CI)	2.66 (2.17, 3.26)	1.67 (1.36, 2.05)	1.62 (1.32, 1.98)
+LR (95\% CI)	1.91 (1.36, 2.86)	2.03 (1.33, 3.10)	6.11 (2.00, 18.61)
-LR (95\% CI)	0.182 (0.09, 0.36)	0.430 (0.29, 0.64)	0.607 (0.50, 0.74)

Optimum Number of Predictors for PMATP Success

Association	Small	Moderate	Large	Very Large
Odds Ratio	≥ 1.5	≥ 3.4	≥ 9.0	≥ 32.0
Relative Risk/Relative Frequenco of	≥ 1.1	≥ 1.4	≥ 2.0	≥ 3.3
+Likelihoosed Ratio	≤ 5.0	≤ 10.0	>10.0	
-Likelihood Ratio	≤ 0.5	≤ 0.2	<0.1	
Hazards Ratio	≥ 1.3	≥ 2.0	≥ 4.0	≥ 10.0

ROC Curve

uGPA $\geq 3.18 ;$ GREq ≥ 141.5; Student took calculus

	First-year gGPA ≥ 3.45	First-year gGPA ≥ 3.45
≥ 2 Factors	76	8
<2 Factors	18	34

Fisher's Exact Test (one-sided): $p<0.001$

$\mathrm{Sn}=0.81$ $(95 \% \mathrm{Cl}: 0.72,0.88)$	$\mathrm{Sp}=0.81$ $(95 \% \mathrm{Cl}: 0.67,0.90)$
$\mathrm{OR}=17.94$	$\mathrm{RFS}=2.61$
$(95 \% \mathrm{Cl}: 7.11,45.29)$	$(95 \% \mathrm{Cl} 2.13,3.20)$
$+\mathrm{LR}=4.25$	$-\mathrm{LR}=0.237$
$(95 \% \mathrm{Cl}: 2.26,7.98)$	$(95 \% \mathrm{Cl}: 0.152,0.367)$

Specific Number of Factors for Prediction of PMATP Success

Number of Positive Factors	gGPA ≥ 3.45	gGPA <3.45	Total	$\%$	\% above/ below cut point
0	3	16	19	16%	
1	15	18	33	45%	$18 / 52=35 \%$
2	49	9	57	86%	$76 / 84=91 \%$
3	27	0	27	100%	
Total	94	42	136	70%	

Interaction Effects

Comparison of Odds Ratios for Predictor Variables

	Univariable OR	Multivariable Adj OR
uGPA	$\begin{gathered} 4.71 \\ (95 \% \text { Cl: } 2.17,10.23) \end{gathered}$	$\underset{(95 \% \text { Cl: } 2.63,22.13)}{ } 7.62$
GREq	$\begin{gathered} 10.49 \\ (95 \% \mathrm{Cl}: 4.11,26.78) \end{gathered}$	$\xrightarrow[(95 \%]{ } 7.68$
Calculus	$\begin{gathered} 10.06 \\ (95 \% \mathrm{Cl}: 2.90,34.86) \end{gathered}$	$\xrightarrow[(95 \% \mathrm{Cl}: 2.66,52.11)]{ } 11.77$

- An interaction btw uGPA \&GREq is suggested by the differences btw the univariable OR \& the corresponding multivariable adjusted OR
- Relatively little change btw the univariable OR \& the corresponding multivariable adj. OR for taking calculus

GREq X uGPA for prediction of PMATP success

Calculus X uGPA for prediction of
PMATP success

A.

Calculus X GREq for prediction of PMATP success
B.

Effect of GREq X uGPA \& PMATP Success

- Controlling for uGPA strata (≥ 3.18 vs. < 3.18):
- Relationship btw GREq and being successful in the PMATP was examined
- Mantel-Haenszel OR ${ }_{\text {est }}=6.5$ (95\% CI: 2.59, 16.52)
- There is statistically significant association between GREq and PMATP success
- Mantel-Haenszel $\chi^{2}(1)=18.62$; $(p<0.001)$
- The null hypothesis for the Breslow-Day test assumes that the ORs for GREq predicting PMATP success is equivalent for uGPA strata
- Breslow-Day test for homogeneity found the ORs to be significantly different for the two strata of uGPA
- Breslow-Day $\chi^{2}(1)=6.05 ;(p=0.014)$

Effect of Calculus X uGPA \& PMATP Success

- Controlling for uGPA strata (≥ 3.18 vs. < 3.18):
- Relationship btw taking calculus and being successful in the PMATP was examined
- Mantel-Haenszel OR $_{\text {est }}=11.8$ ($95 \% \mathrm{CI}: 3.71,44.12$)
- There is statistically significant association between taking calculus and PMATP success
- Mantel-Haenszel $\chi^{2}(1)=16.76 ;(p<0.001)$
- The null hypothesis for the Breslow-Day test assumes that the ORs for taking calculus predicting PMATP success is equivalent for uGPA strata
- The Breslow-Day test for homogeneity found the ORs to not be significantly different from one another
- Breslow-Day $\chi^{2}(1)=0.12 ;(p=0.730)$

Calculus X GREq for prediction of PMATP success

Effect of Calculus X GREq \& PMATP Success

- Controlling for GREq (≥ 141.5 vs. < 141.5):
- Relationship btw taking calculus and being successful in the PMATP was examined
- Mantel-Haenszel OR ${ }_{\text {est }}=10$ ($95 \% \mathrm{CI}: 3.29,24.49$)
- There is statistically significant association between taking calculus and PMATP success
- Mantel-Haenszel $\chi^{2}(1)=18.85 ; p<0.001$)
- The null hypothesis for the Breslow-Day test assumes that the ORs for taking calculus predicting PMATP success is equivalent for GREq strata
- The Breslow-Day test for homogeneity found the ORs to not be significantly different from one another
- Breslow-Day $\chi^{2}(1)=0.07 ;(p=0.791)$

Three-way Interactions

3-way interaction of GREq X Calculus X uGPA for prediction of PMATP Success

3-way Interaction of GREq X Calculus X uGPA

Are you here yet?

THANK YOU!!!

