PREDICTION MODELING FOR ACADEMIC SUCCESS

Scott L. Bruce, EdD, ATC Associate Professor/Co-clinical Coordinator/Director of Research Masters of Athletic Training Program Arkansas State University

2019 ASAHP Annual Conference – October 2019

I have no affiliation or financial interest with or involvement in any organization or entity that will be discussed as part of this presentation.

Objectives

- To identify factors which may predict academic success
- To evaluate factors to decide which may contribute to predicting academic success
- To create a prediction model that fits the learners' specific situation
- To evaluate whether or not their prediction model has the ability to identify the most qualified candidates

"Begin with the end in mind" (Covey, 2004)

- What is the ultimate indicator of student success in an academic program?
 - In Athletic Training it is 1st-attempt Board of Certification (BOC) exam success
- Second question: How does one go about predicting who might be successful in a graduate academic program?
 - Prediction modeling
- For today's presentation, I will use a Professional Master's of Athletic Training Program as my example

Outcome Measures

- Based on:
 - Sensitivity
 - Specificity
 - Odds Ratio
 - Relative Risk???
 - Likelihood Ratios

Odds Ratio

- The odds that an outcome will occur given a particular exposure, compared to the odds of the outcome occurring in the absence of that exposure
- If the odds are the same for both groups, OR = 1.0

Scotia N. J Can Acad Child Adolesc Psychiatry, 2010;19:227-229.

Odds Ratio

- Odds and horse racing
 - 2:1 horse or 50:1 horse?
 - 2:1 is better than the long shot of 50:1

- 2:1 injury/academic success or 50:1 injury/ academic success
 - 50:1 says you are more likely to get injured or have academic success than someone at 2:1

Relative Risk

- The likelihood that someone who has been exposed to a risk factor will develop the injury as compared to someone who does not have the risk factor
 - If the probability is the same for both groups, RR = 1.0

Relative Frequency of Success

- Relative Frequency of Success (RFS) replaced Relative Risk since risk is not an appropriate term when measuring success
- Relative Frequency of Success is defined as:
 - The likelihood that someone who has the predictor is forecast to be successful in a graduate academic program is successful compared with one who has not been so classified

Likelihood Ratios

- Positive LR (or +LR) is the probability that a student with the predictor (or possesses the predictor), would be successful in a graduate academic program compared to the probability that a student without the variable (or does not possess the predictor) would be successful in a graduate program
- Negative LR (or –LR) is the probability that a student w/o the predictor would be successful in a graduate academic program compared to the probability of the student with the predictor would be successful in a graduate program

10

Interpreting Different Statistics

Association	Small	Moderate	Large	Very Large
Odds Ratio	≥ 1.5	≥ 3.4	≥ 9.0	≥ 32.0
Relative Risk/Relative Frequency of Success	≥ 1.1	≥ 1.4	≥ 2.0	≥ 3.3
+ Likelihood Ratio	≤ 5 .0	≤ 10.0	> 10.0	
 – Likelihood Ratio 	≤ 0.5	≤ 0.2	< 0.1	
Hazards Ratio	≥ 1.3	≥ 2.0	≥ 4.0	≥ 10.0

Steps in Prediction Modeling

Three step process

- 1. Create the prediction model
 - Clear operational definition of the dependent variable
 - ID any and all potential predictor variables
- 2. Determine validity
 - Apply rule to a different population
- 3. Conduct impact analysis

Today's focus will be on the development of CPGs

Evidence rule change behavior, changes outcomes, or reduces costs

Clear Operational Definition of the Dependent Variable

- Success in a grad program is difficult to define
 - Most commonly accepted indicator of academic success is GPA

	First-attempt Pass on the BOC exam				
		Yes	No		
First-year gGPA ≥ 3.45		71	9		
First-year gGPA < 3.45		19	20		
Fisher's Exact Test (one-sided) p < 0.001					
Sn = 0.79 (95% Cl: 0.69, 0.86)		Sp = 0.69 (95% CI: 0.51, 0.83)			
OR = 8.30 (95% CI: 3.26, 21.16)		RFS = 1.82 (95% CI: 1.49	, 2.23)		
+LR = 2.54 (95% CI: 1.46, 4.42)		-LR = 0.36 (95% CI: 0.19	2, 0.489)		

Association	Small	Moderate	Large	Very Large
Odds Ratio	≥ 1.5	≥ 3.4	≥ 9.0	≥ 32.0
Relative Risk/Relative Frequency of Success	≥ 1.1	≥ 1.4	≥ 2.0	≥ 3.3
+ Likelihood Ratio	≤ 5.0	≤ 10.0	> 10.0	
– Likelihood Ratio	≤ 0.5	≤ 0.2	< 0.1	
Hazards Ratio	≥ 1.3	≥ 2.0	≥ 4.0	≥ 10.0

Potential Predictors for PMATP Success (Major Categories Only)

- Academic Profile of Undergraduate Institution (APUI)
- Basic Carnegie classification categories
- Undergraduate institution size and setting
- Advanced math & science courses
- Number of adv. science courses

- Number of AT courses
- Adv. math, science, & AT courses
- uGPA
- GRE Scores
- Public-Private Institution
- Residency
 - In-state vs. Out-of-state

39 original variables investigated

Multicollinearity

- When 2 or more predictors in a regression model are highly linearly related
- Outcome parameter for multicollinearity is Tolerance & Variance Inflation Factor (VIF)
 - Tolerance values close to zero = multicollinearity
 - VIF = values of > 10 = multicollinearity
- Multicollinearity helped reduce the number of predictors from 39 to 9

Predictor Variables for PMATP Success

Origin Set of Predictors

- Number of math & science courses
- Research Intensive = 1; Others = 0
- High APUI
- uGPA
- GREv
- GREq
- GREwr
- Physics: 1 = Yes; 0 = No
- Calculus: 1 = Yes; 0 = No

Final Set of Predictors

- uGPA
- GREq
- Calculus
- "Original Set of Predictors" is after multicollinearity analysis which were then entered into the logistic regression.
- The "Final Set of Predictors" were what predictors were left after logistic regression

ROC Curves for GREq & uGPA (for cut-pts)

Tables for Individual Variables

Association	Small	Moderate	Large	Very Large
Odds Ratio	≥ 1.5	≥ 3.4	≥ 9.0	≥ 32.0
Relative Risk/Relative Frequency of Success	≥ 1.1	≥ 1.4	≥ 2.0	≥ 3.3
+ Likelihood Ratio	≤ 5.0	≤ 10.0	> 10.0	
 Likelihood Ratio 	≤ 0.5	≤ 0.2	< 0.1	
Hazards Ratio	≥ 1.3	≥ 2.0	≥ 4.0	≥ 10.0

	1st Year gGPA ≥ 3.45	1st Year gGPA < 3.45		1st Year gGPA ≥ 3.45	1st Year gGPA < 3.45		1st Year gGPA ≥ 3.45	1st Year gGPA < 3.45
GREq = ≥ 141.5	85	18	uGPA = ≥ 3.18	68	15	Took Calculus	41	3
GREq = < 141.5	9	20	uGPA = < 3.18	26	27	Did not take Calculus	53	39

Fisher's Exact Test (one-sided) p < 0.001 for all 3 factors

Sn (95% CI)	0.90 (0.84, 0.95)	0.72 (0.63, 0.80)	0.44 (0.34, 0.54)
Sp (95% CI)	0.53 (0.37, 0.68)	0.64 (0.49, 0.77)	0.93 (0.81, 0.98)
OR (95% CI)	10.49 (4.11, 26.78)	4.71 (2.17, 10.23)	10.06 (2.90, 34.86)
RFS (95% CI)	2.66 (2.17, 3.26)	1.67 (1.36, 2.05)	1.62 (1.32, 1.98)
+LR (95% CI)	1.91 (1.36, 2.86)	2.03 (1.33, 3.10)	6.11 (2.00, 18.61)
–LR (95% CI)	0.182 (0.09, 0.36)	0.430 (0.29, 0.64)	0.607 (0.50, 0.74)

Optimum Number of Predictors for PMATP Success

Association	Small	Moderate	Large	Very Large
Odds Ratio	≥ 1.5	≥ 3.4	≥ 9.0	≥ 32.0
Relative Risk/Relative Frequency of Success	≥ 1.1	≥ 1.4	≥ 2.0	≥ 3.3
+ Likelihood Ratio	≤ 5.0	≤ 10.0	> 10.0	
 Likelihood Ratio 	≤ 0.5	≤ 0.2	< 0.1	
Hazards Ratio	≥ 1.3	≥ 2.0	≥ 4.0	≥ 10.0

uGPA \geq 3.18; GREq \geq 141.5; Student took calculus

	First-year gGPA ≥ 3.45		First-year gGPA ≥ 3.45			
≥ 2 Factors	76		8			
< 2 Factors	18		34			
Fisher's Exact Test (one-sided): $p < 0.001$						
Sn = 0.81		Sp = 0.81				
(95% CI: 0.72, 0.88)		(95% CI: 0.67, 0.90)				
OR = 17.94		RFS =	2.61			

(95% CI: 2.13, 3.20)

(95% CI: 0.152, 0.367)

-LR = 0.237

(95% CI: 7.11, 45.29)

(95% CI: 2.26, 7.98)

+LR = 4.25

Specific Number of Factors for Prediction of PMATP Success

Number of Positive Factors	gGPA ≥ 3.45	gGPA < 3.45	Total	%	% above/ below cut point
0	3	16	19	16%	40/50 - 250/
1	15	18	33	45%	<mark>18/52</mark> = 35%
2	49	9	57	86%	76/94 - 010/
3	27	0	27	100%	76/84 = 91%
Total	94	42	136	70%	

0.91 / 0.35 = 2.6 (RFS)

Interaction Effects

Comparison of Odds Ratios for Predictor Variables

- An interaction btw uGPA &GREq is suggested by the differences btw the univariable OR & the corresponding multivariable adjusted OR
- Relatively little change btw the univariable OR & the corresponding multivariable adj. OR for taking calculus

GREq X uGPA for prediction of PMATP success

Effect of GREq X uGPA & PMATP Success

- Controlling for uGPA strata (\geq 3.18 vs. < 3.18):
 - Relationship btw GREq and being successful in the PMATP was examined
 - Mantel-Haenszel OR_{est} = 6.5 (95% CI: 2.59, 16.52)
 - There is statistically significant association between GREq and PMATP success
 - Mantel-Haenszel χ²(1) = 18.62; (p < 0.001)</p>
 - The null hypothesis for the Breslow-Day test assumes that the ORs for GREq predicting PMATP success is equivalent for uGPA strata
 - Breslow-Day test for homogeneity found the ORs to be significantly different for the two strata of uGPA
 - Breslow-Day χ²(1) = 6.05; (ρ = 0.014)

Effect of Calculus X uGPA & PMATP Success

- Controlling for uGPA strata (\geq 3.18 vs. < 3.18):
 - Relationship btw taking calculus and being successful in the PMATP was examined
 - Mantel-Haenszel OR_{est} = 11.8 (95% CI: 3.71, 44.12)
 - There is statistically significant association between taking calculus and PMATP success
 - Mantel-Haenszel χ²(1) = 16.76; (*p* < 0.001)</p>
 - The null hypothesis for the Breslow-Day test assumes that the ORs for taking calculus predicting PMATP success is equivalent for uGPA strata
 - The Breslow-Day test for homogeneity found the ORs to not be significantly different from one another
 - Breslow-Day χ²(1) = 0.12; (ρ = 0.730)

Calculus X GREq for prediction of PMATP success

Effect of Calculus X GREq & PMATP Success

- Controlling for GREq (≥ 141.5 vs. < 141.5):</p>
 - Relationship btw taking calculus and being successful in the PMATP was examined
 - Mantel-Haenszel OR_{est} = 10 (95% CI: 3.29, 24.49)
 - There is statistically significant association between taking calculus and PMATP success
 - Mantel-Haenszel χ²(1) = 18.85; *p* < 0.001)</p>
 - The null hypothesis for the Breslow-Day test assumes that the ORs for taking calculus predicting PMATP success is equivalent for GREq strata
 - The Breslow-Day test for homogeneity found the ORs to not be significantly different from one another
 - Breslow-Day χ²(1) = 0.07; (*p* = 0.791)

Three-way Interactions

3-way interaction of GREq X Calculus X uGPA for prediction of PMATP Success

3-way Interaction of GREq X Calculus X uGPA

Are you here yet?

THANK YOU!!!

Scott L. Bruce, EdD, ATC Associate Professor/Clinical Education Coordinator Arkansas State University

sbruce@astate.edu 423-240-1709

Jeremiah 29:11